%I #11 Sep 03 2019 00:56:01
%S 1,11,21,1031,14041,60051,1170061,17385071,108756081,1445344091,
%T 21412220101,168765465111,1888849170121,26593883436131,
%U 243049333374141,2540104369105151,33511642426760161,336206996880480171,3450730536835416181,42888724689051729191
%N Expansion of (1 + 8x - 9x^2)/(1 - 3x + 3x^2 - 1001x^3).
%C Binomial transform of A092804.
%H T. D. Noe, <a href="/A092806/b092806.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1001).
%F a(n) = 91^(n/2)*(cos(n*arccot(-4*sqrt(3)/15))/3 + sqrt(3)*sin(n*arccot(-4*sqrt(3)/15))/3) + 2*11^n/3.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Mar 06 2004