login
A092796
Number of connected relations.
1
1, 213, 14857, 694485, 27005881, 957263493, 32333393737, 1064686990965, 34589700409561, 1115777278022373, 35856732186282217, 1149998292486777045, 36843831022923582841, 1179748027215029366853, 37764598757179830172297, 1208682260675932309564725
OFFSET
1,2
LINKS
G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
Index entries for linear recurrences with constant coefficients, signature (91,-3299,62713,-682172,4276972,-14386144,20106240).
FORMULA
a(n) = 32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n.
G.f.: -x*(132960*x^5 + 145292*x^4 - 17528*x^3 - 1227*x^2 + 122*x + 1) / ((6*x-1)*(7*x-1)*(8*x-1)*(10*x-1)*(11*x-1)*(17*x-1)*(32*x-1)). - Colin Barker, Jul 13 2013
MATHEMATICA
Table[32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
PROG
(PARI) for(n=0, 50, print1(32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, ", ")) \\ G. C. Greubel, Oct 08 2017
(Magma) [32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Goran Kilibarda, Vladeta Jovovic, Apr 15 2004
EXTENSIONS
Additional term from Colin Barker, Jul 13 2013
STATUS
approved