

A092789


a(n) = smallest prime of the form prime(n)+m! for some m >= 0.


4



3, 5, 7, 13, 13, 19, 19, 43, 29, 31, 37, 43, 43, 67, 53, 59, 61, 67, 73, 73, 79, 103, 89, 113, 103, 103, 109, 109, 229, 137, 151, 137, 139, 163, 151, 157, 163, 283, 173, 179, 181, 363061, 193, 199, 199, 223, 331, 229, 229, 349, 239, 241, 5281, 257, 263, 269, 271
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

n! + p is composite for n >= p since p divides n! for n >= p.
Is it known that such a prime always exists? If not the definition should say "or 1 if no such prime exists".  N. J. A. Sloane, Aug 11 2011


LINKS

Table of n, a(n) for n=1..57.


MAPLE

A092789 := proc(n) local q, m ; for m from 0 do q := ithprime(n)+m! ; if isprime(q) then return q; end if; end do ; end proc:
seq(A092789(n), n=1..80) ; # R. J. Mathar, Mar 02 2010


PROG

(PARI) nfactpm3(n) = { forprime(p=1, n, c=0; for(x=0, n, y=x!+p; if(isprime(y), c++; print1(y", "); break)); ) }
(MAGMA) SmallestP:=function(p) for m in [0..p1] do q:=p+Factorial(m); if IsPrime(q) then return q; end if; end for; return 1; end function; [ SmallestP(NthPrime(n)): n in [1..80] ]; // Klaus Brockhaus, Mar 02 2010


CROSSREFS

Cf. A175193, A175194, A082470.
Sequence in context: A018205 A121047 A152075 * A092793 A285130 A024909
Adjacent sequences: A092786 A092787 A092788 * A092790 A092791 A092792


KEYWORD

nonn


AUTHOR

Cino Hilliard, Apr 14 2004


EXTENSIONS

Definition and offset corrected following a suggestion from Leroy Quet.  Klaus Brockhaus, Mar 02 2010


STATUS

approved



