This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092760 Unitary-sigma unitary-phi perfect numbers. 3

%I

%S 6,20,72,272,2808,5280,12480,65792,251719680,4295032832,39462420480,

%T 2151811200000,375297105592320,4238621367336960,

%U 20203489717239782783648394117120,84353101158454670682576150304666023245622804480

%N Unitary-sigma unitary-phi perfect numbers.

%C USUP(n) = n/k for some integer k where USUP(n) = A109712(n).

%F Numbers of form 2^(2^m)*F_m appear in the sequence, where F_m means Fermat prime 2^(2^m)+1. Because USUP(2^(2^m)*F_m)=UnitarySigma(2^(2^m))*UnitaryPhi(F_m)=(2^(2^m)+1)*(F_m-1)= F_m*2^(2^m)).

%F Numbers of the following form exist in the sequence. For j=0 to 4, k*product F_i, i=0 to j, F_i means Fermat prime 2^(2^n)+1, k is an integer.

%e USUP(2^4*7^2)=UnitarySigma(2^4)*UnitaryPhi(7^2)=17*48= 816

%e So USUP(n) = UnitarySigma(n) if n=2^r = UnitaryPhi(n) if GCD(2,n)=1

%e Examples : a(1)=2*F_0, a(5)=2^5*11*F_0*F_1, ...., a(12)=2^40*4278255361*F_0*F_1*F_2*F_3*F_4.

%e Factorizations : 2*3; 2^2*5; 2^3*3^2; 2^4*17; 2^5*3*11*5; 2^6*5*13*3; 2^8*257; 2^12*3*5*17*241; 2^16*65537; 2^14*3*5*7^2*29*113; 2^10*3*5^5*7*11*41*71; 2^17*3*5*17*257*43691; 2^20*3*5*17*257*61681; 2^40*3*5*17*257*65537*4278255361; 2^48*3^6*5*7*11*13*17*23*47*137*193*65537*115903*22253377; 2^48*3^7*5*7*11*13*17*23*47*137*193*1093*65537*115903*22253377

%p A047994 := proc(n) local ifs,d ; if n = 1 then 1; else ifs := ifactors(n)[2] ; mul(op(1,op(d,ifs))^op(2,op(d,ifs))-1,d=1..nops(ifs)) ; fi ; end: A006519 := proc(n) local i ; for i in ifactors(n)[2] do if op(1,i) = 2 then RETURN( op(1,i)^op(2,i) ) ; fi ; od: RETURN(1) ; end: Usup := proc(n) local p2 ; p2 := A006519(n) ; (p2+1)*A047994(n/p2) ; end: for n from 1 do if n mod Usup(n) = 0 then print(n) ; fi; od: # _R. J. Mathar_, Dec 15 2008

%Y Cf. A092788, A091321, A092356

%K nonn

%O 1,1

%A _Yasutoshi Kohmoto_, Apr 14 2004

%E 2808 inserted by _R. J. Mathar_, Dec 15 2008

%E 39462420480 and 2151811200000 inserted by _Andrew Lelechenko_, Apr 10 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 14:32 EDT 2019. Contains 323480 sequences. (Running on oeis4.)