This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092687 First column and main diagonal of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686. 7

%I

%S 1,2,6,16,46,132,384,1120,3278,9612,28236,83072,244752,722048,2132704,

%T 6306304,18666190,55300732,163968612,486528288,1444571068,4291629384,

%U 12756459936,37934818112,112855778768,335867740704,999895548736

%N First column and main diagonal of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.

%C Conjecture: Limit n->infinity a(n)^(1/n) = 3. - _Vaclav Kotesovec_, Jun 29 2015

%H Vaclav Kotesovec, <a href="/A092687/b092687.txt">Table of n, a(n) for n = 0..850</a>

%F G.f. satisfies: A(x) = A( x^2/(1-2x) )/(1-2x). Recurrence: a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*2^(n-2k)*a(k). - _Paul D. Hanna_, Jul 10 2006

%t m = 27; A[_] = 1; Do[A[x_] = A[x^2/(1-2x)]/(1-2x) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 03 2019 *)

%o (PARI) T(n,k)=if(n<0||k>n,0, if(n==0&k==0,1, if(n==1&k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))

%o a(n)=T(n,0)

%o for(n=0,30,print1(a(n),", "))

%o (PARI) a(n)=local(A=1+x);for(i=0,n\2,A=subst(A,x,x^2/(1-2*x+x*O(x^n)))/(1-2*x));polcoeff(A,n) \\ _Paul D. Hanna_, Jul 10 2006

%o (PARI) /* Using Recurrence: */

%o a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*2^(n-2*k)*a(k)))

%o for(n=0,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jul 10 2006

%Y Cf. A092683, A092686, A092688, A092689.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 04 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 01:19 EST 2019. Contains 329978 sequences. (Running on oeis4.)