%I #31 Oct 11 2017 10:23:57
%S 1,3,30,630,22680,178200,97297200,10216206000,198486288000,
%T 237588086736000,49893498214560000,1803293578326240000,
%U 222759794969712000000,1329207696584271504000000
%N Denominators of coefficients in the series for inverf(2x/sqrt(Pi)).
%C Differs from A007019(n) at n = 6, 9, 12, ....
%H G. C. Greubel, <a href="/A092677/b092677.txt">Table of n, a(n) for n = 1..235</a>
%H G. Alkauskas, <a href="http://arxiv.org/abs/1506.08028">Algebraic and abelian solutions to the projective translation equation</a>, arXiv preprint arXiv:1506.08028 [math.AG], 2015-2016; Aequationes Math. 90 (4) (2016), 727-763.
%H J. M. Blair, C. A. Edwards and J. H. Johnson, <a href="http://dx.doi.org/10.1090/S0025-5718-1976-0421040-7">Rational Chebyshev approximations for the inverse of the error function</a>, Math. Comp. 30 (1976), 827-830.
%H L. Carlitz, <a href="http://projecteuclid.org/euclid.pjm/1103035736">The inverse of the error function</a>, Pacific J. Math., 13 (1963), 459-470.
%H Eric Weisstein, <a href="/A092676/a092676.txt">Mathematica program and first 50 terms of the series</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InverseErf.html">Inverse Erf</a>
%e inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ...
%t Denominator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}],
%t x]][[2 ;; ;; 2]] (* _G. C. Greubel_, Jan 09 2017 *)
%Y Cf. A007019, A092677.
%K nonn
%O 1,2
%A _Eric W. Weisstein_, Mar 02 2004