login
A092529
Primes p such that both the digit sum of p plus p and the digit product of p plus p are also primes.
1
163, 233, 293, 431, 499, 563, 617, 743, 1423, 1483, 1489, 1867, 2273, 2543, 2633, 3449, 4211, 4217, 4273, 4547, 4729, 5861, 6121, 6529, 6637, 6653, 6761, 6857, 6949, 7681, 8273, 8431, 8837, 8839, 9649, 9689
OFFSET
1,1
COMMENTS
Intersection of A048519 and A092518.
Zeros are not permitted in p; thus, for example, 101 is not included. - Harvey P. Dale, May 25 2013
LINKS
EXAMPLE
a(2) = 233: 233+(2+3+3) = 233+8 = 241, which is prime. 233+(2*3*3) = 233+18 = 251, which is prime.
MAPLE
filter:= proc(p) local L;
if not isprime(p) then return false fi;
L:= convert(p, base, 10);
if member(0, L) then return false fi;
isprime(p + convert(L, `+`)) and isprime(p + convert(L, `*`))
end proc:
select(filter, [seq(i, i=3..10000, 2)]); # Robert Israel, Feb 20 2024
MATHEMATICA
pppQ[n_]:=Module[{idn=IntegerDigits[n]}, !MemberQ[idn, 0]&&And@@PrimeQ[ {n+ Total[idn], n+Times@@idn}]]; Select[Prime[Range[1200]], pppQ] (* Harvey P. Dale, May 25 2013 *)
CROSSREFS
Sequence in context: A132250 A303379 A142940 * A142373 A142534 A142695
KEYWORD
nonn,base
AUTHOR
Ray G. Opao, Apr 08 2004
EXTENSIONS
More terms from Robert G. Wilson v, Apr 10 2004
STATUS
approved