

A092529


Primes p such that both the digit sum of p plus p and the digit product of p plus p are also primes.


0



163, 233, 293, 431, 499, 563, 617, 743, 1423, 1483, 1489, 1867, 2273, 2543, 2633, 3449, 4211, 4217, 4273, 4547, 4729, 5861, 6121, 6529, 6637, 6653, 6761, 6857, 6949, 7681, 8273, 8431, 8837, 8839, 9649, 9689
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Intersection of A048519 and A092518.
Zeros are not permitted in p; thus, for example, 101 is not included.  Harvey P. Dale, May 25 2013


LINKS

Table of n, a(n) for n=1..36.


EXAMPLE

a(2) = 233: 233+(2+3+3) = 233+8 = 241, which is prime. 233+(2*3*3) = 233+18 = 251, which is prime.


MATHEMATICA

pppQ[n_]:=Module[{idn=IntegerDigits[n]}, !MemberQ[idn, 0]&&And@@PrimeQ[ {n+ Total[idn], n+Times@@idn}]]; Select[Prime[Range[1200]], pppQ] (* Harvey P. Dale, May 25 2013 *)


CROSSREFS

Cf. A048519, A092518.
Sequence in context: A132250 A303379 A142940 * A142373 A142534 A142695
Adjacent sequences: A092526 A092527 A092528 * A092530 A092531 A092532


KEYWORD

nonn,base


AUTHOR

Ray G. Opao, Apr 08 2004


EXTENSIONS

More terms from Robert G. Wilson v, Apr 10 2004


STATUS

approved



