login
Number of square divisors of n-th cube: a(n) = A046951(n^3).
5

%I #42 Aug 18 2024 04:09:57

%S 1,2,2,4,2,4,2,5,4,4,2,8,2,4,4,7,2,8,2,8,4,4,2,10,4,4,5,8,2,8,2,8,4,4,

%T 4,16,2,4,4,10,2,8,2,8,8,4,2,14,4,8,4,8,2,10,4,10,4,4,2,16,2,4,8,10,4,

%U 8,2,8,4,8,2,20,2,4,8,8,4,8,2,14,7,4,2,16,4,4,4,10,2,16,4,8,4,4,4,16

%N Number of square divisors of n-th cube: a(n) = A046951(n^3).

%C Apparently the inverse Mobius transform of A056624 (and therefore multiplicative). - _R. J. Mathar_, Feb 07 2011

%H Antti Karttunen, <a href="/A092520/b092520.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000005(n) iff n is squarefree.

%F From _Werner Schulte_, Feb 19 2018: (Start)

%F Multiplicative with a(p^e) = floor((3*e+2)/2) = A001651(e+1), p prime and e >= 0.

%F Dirichlet g.f.: Sum_{n>0} a(n)/n^s = (zeta(s))^2 * zeta(2*s) / zeta(3*s). (End)

%F Sum_{k=1..n} a(k) ~ Pi^2 * n/(6*zeta(3)) * (log(n) - 1 + 2*gamma + 12*zeta'(2)/Pi^2 - 3*zeta'(3)/zeta(3)) + zeta(1/2)^2 * sqrt(n) / zeta(3/2), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Feb 08 2019

%e For n=12, the divisors of 12^3 = 1728 are 1 = 1^2, 2, 3, 4 = 2^2, 6, 8, 9 = 3^2, 12, 16 = 4^2, 18, 24, 27, 32, 36 = 6^2, 48, 54, 64 = 8^2, 72, 96, 108, 144 = 12^2, 192, 216, 288, 432, 576 = 24^2, 864 and 1728: eight of them are squares, therefore a(12) = 8.

%p A092520 := proc(n)

%p A046951(n^3) ;

%p end proc:

%p seq(A092520(n),n=1..50) ; # _R. J. Mathar_, Jul 09 2016

%t a[n_] := Count[Divisors[n^3], d_ /; IntegerQ[Sqrt[d]]]; Array[a, 100] (* _Jean-François Alcover_, Feb 13 2018 *)

%t f[p_, e_] := Floor[(3*e+2)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 15 2020 *)

%o (PARI) A046951(n) = factorback(apply(e->e\2+1, factor(n)[, 2])) \\ This function from _Charles R Greathouse IV_, Sep 17 2015

%o A092520(n) = A046951(n^3); \\ _Antti Karttunen_, May 25 2017

%o (PARI) a(n) = sumdiv(n^3, d, issquare(d)); \\ _Michel Marcus_, Apr 08 2018

%o (PARI) a(n) = vecprod(apply(x->(3*x+2)\2, factor(n)[, 2])); \\ _Amiram Eldar_, Aug 18 2024

%Y Cf. A000005, A000290, A000578, A005117, A046951, A048785, A056624.

%K nonn,mult,easy

%O 1,2

%A _Reinhard Zumkeller_, Apr 06 2004