login
A092514
Decimal expansion of e^(1/5).
4
1, 2, 2, 1, 4, 0, 2, 7, 5, 8, 1, 6, 0, 1, 6, 9, 8, 3, 3, 9, 2, 1, 0, 7, 1, 9, 9, 4, 6, 3, 9, 6, 7, 4, 1, 7, 0, 3, 0, 7, 5, 8, 0, 9, 4, 1, 5, 2, 0, 5, 0, 3, 6, 4, 1, 2, 7, 3, 4, 2, 5, 0, 9, 8, 5, 9, 9, 2, 0, 6, 2, 3, 3, 0, 8, 3, 6, 3, 7, 8, 1, 6, 2, 4, 2, 2, 8, 8, 7, 4, 4, 0, 1, 3, 3, 7, 2, 4, 7, 3, 9, 6, 9, 0, 2
OFFSET
1,2
COMMENTS
e^(1/5) maximizes the value of x^(c/(x^5)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018
FORMULA
e^(1/5) = 5^(2*5)/21355775*(1 + Sum_{n>=1} (1 + n^7/5 + n/5)/(5^n*n!)). - Alexander R. Povolotsky, Sep 13 2011
e^(1/5) = (1/2)*lim_{n -> oo} 1 + (6 + (11 + (16 + ... + ((5*n+1)/ (5*n))/...)/15)/10)/5 = lim_{n -> oo} 1 + (1 + (1 + (1 + ... + (1 + 1/(5*n+5))/(5*n)/...)/15)/10)/5. - Rok Cestnik, Jan 19 2017
EXAMPLE
1.22140275816...
MAPLE
evalf(exp(1/5)); # Muniru A Asiru, Aug 16 2018
MATHEMATICA
RealDigits[Surd[E, 5], 10, 120][[1]] (* Harvey P. Dale, Aug 12 2016 *)
PROG
(PARI) exp(1/5) \\ Michel Marcus, Aug 16 2018
(Magma) Exp(1/5); // Vincenzo Librandi, Aug 17 2018
CROSSREFS
Sequence in context: A338435 A214722 A071430 * A106641 A191785 A320500
KEYWORD
cons,nonn
AUTHOR
Mohammad K. Azarian, Apr 05 2004
STATUS
approved