OFFSET
1,6
COMMENTS
A recurrence relation follows in a straightforward manner from the above formula and the recurrence relation for A058094.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
Index entries for linear recurrences with constant coefficients, signature (6,-11,9,-4,-4,1).
FORMULA
From Colin Barker, Aug 21 2019: (Start)
G.f.: x^5 / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6).
a(n) = 6*a(n-1) - 11*a(n-2) + 9*a(n-3) - 4*a(n-4) - 4*a(n-5) + a(n-6) for n>6.
(End)
MAPLE
b[1]:=1:b[2]:=2:b[3]:=5:b[4]:=14:b[5]:=42:b[6]:=132: for n from 6 to 34 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od: a[1]:=0:a[2]:=0:a[3]:=0:a[4]:=0: for n from 5 to 34 do a[n]:=2*b[n-2]-5*b[n-3]+b[n-4]+a[n-1] od: seq(a[n], n=1..34); # Emeric Deutsch, Apr 12 2005
MATHEMATICA
LinearRecurrence[{6, -11, 9, -4, -4, 1}, {0, 0, 0, 0, 1, 6}, 40] (* Vincenzo Librandi, Aug 15 2017 *)
PROG
(PARI) concat([0, 0, 0, 0], Vec(x^5 / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ Colin Barker, Aug 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 04 2004
EXTENSIONS
Edited by Emeric Deutsch, Apr 12 2005
STATUS
approved