This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092472 a(n)=sum(i+j+k=n,(2n)!/(i+j)!/(j+k)!/(k+i)!) 0<=i<=n, 0<=j<=n, 0<=k<=n. 1
 1, 6, 54, 510, 4830, 45486, 425502, 3956238, 36594558, 337038702, 3093092574, 28302208974, 258331692606, 2353101799470, 21397006320030, 194281959853710, 1761880227283710, 15961196057303790, 144466419007648350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA Recurrence (for n>3): (n-3)*n*a(n) = (17*n^2-55*n+24)*a(n-1) - 36*(n-2)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 14 2012 a(n) ~ 9^n. - Vaclav Kotesovec, Oct 14 2012 a(n) = 3^(2*n-1) * (2 + Sum_{k=1..n-2} 2^(k+2)*C(2*k+1,k-1)/3^(2*k+2) ), for n>2. - Vaclav Kotesovec, Oct 28 2012 MATHEMATICA Table[Sum[Sum[Sum[If[i+j+k==n, (2n)!/(i+j)!/(j+k)!/(k+i)!, 0], {i, 0, n}], {j, 0, n}], {k, 0, n}], {n, 0, 20}] (* or *) Flatten[{1, 6, RecurrenceTable[{(n-3)*n*a[n]==(17*n^2-55*n+24)*a[n-1]-36*(n-2)*(2*n-3)*a[n-2], a[2]==54, a[3]==510}, a, {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 14 2012 *) Flatten[{1, 6, Table[3^(2*n-1)*(2+Sum[2^(k+2)*Binomial[2*k+1, k-1]/3^(2*k+2), {k, 1, n-2}]), {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 28 2012 *) PROG (PARI) a(n)=sum(i=0, n, sum(j=0, n, sum(k=0, n, if(i+j+k-n, 0, (2*n)!/(i+j)!/(j+k)!/(k+i)!)))) CROSSREFS Sequence in context: A202364 A177484 A092810 * A098658 A109576 A201352 Adjacent sequences:  A092469 A092470 A092471 * A092473 A092474 A092475 KEYWORD nonn,changed AUTHOR Benoit Cloitre, Mar 25 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .