login
A092442
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
2
0, 1, 5, 19, 59, 161, 405, 967, 2231, 5029, 11153, 24443, 53091, 114505, 245549, 524047, 1113839, 2358989, 4980393, 10485379, 22019675, 46136881, 96468485, 201326039, 419429799, 872414581, 1811938625, 3758095627, 7784627411
OFFSET
0,3
COMMENTS
Differences give A066368.
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
LINKS
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
a(n)=(n+1)(2^n-1)-n^2.
G.f.:(x*(4*x^3-3*x^2+2*x-1))/((2*x-1)^2*(x-1)^3) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]
EXAMPLE
a(3)=4(2^3-1)-3^2=19.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
STATUS
approved