This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092438 Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions. 2
 0, 2, 6, 26, 90, 302, 966, 3026, 9330, 28502, 86526, 261626, 788970, 2375102, 7141686, 21457826, 64439010, 193448102, 580606446, 1742343626, 5228079450, 15686335502, 47063200806, 141197991026, 423610750290, 1270865805302 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A092438(n) = Entry n+1 in row n of A092437. A092438(n) = A046717(n+1)-2^(n+1)+1. REFERENCES J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13). LINKS J. Propp, Publications and Preprints J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics Index to sequences with linear recurrences with constant coefficients, signature (5,-5,-5,6). [From R. J. Mathar, Apr 21 2010] FORMULA a(n)=(3^(n+1)+(-1)^(n+1))/2-2^(n+1)+1 a(n) = +5*a(n-1) -5*a(n-2) -5*a(n-3) +6*a(n-4) = 2*A140420(n) G..f: -2*x*(1-2*x+3*x^2) / ( (x-1)*(3*x-1)*(2*x-1)*(1+x) ). [From R. J. Mathar, Apr 21 2010] EXAMPLE a(3)=(3^4+(-1)^4)/2-2^4+1=26. CROSSREFS Cf. A092437-A092443. Sequence in context: A050573 A223094 A213339 * A027207 A027231 A083845 Adjacent sequences:  A092435 A092436 A092437 * A092439 A092440 A092441 KEYWORD easy,nonn AUTHOR Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 20 09:04 EDT 2013. Contains 225458 sequences.