login
a(n) is the smallest positive integer such that the product of all 1/(1-1/a(n)) is less than Pi.
0

%I #13 Jun 01 2024 11:12:45

%S 2,3,23,601,1800857,15150670259532,428274542923473692585258931,

%T 684206983591194904989689062059991542510707643860720258,

%U 792823608217999404644552059785470357855585023133283985498107007444338827113094578293029854179197929809783961

%N a(n) is the smallest positive integer such that the product of all 1/(1-1/a(n)) is less than Pi.

%C Based on an idea of _Leroy Quet_, who provided the first three terms.

%e a(3)=23 because (1/(1-1/2))*(1/(1-1/3))*(1/(1-1/23)) < Pi and (1/(1-1/2))*(1/(1-1/3))*(1/(1-1/22)) > Pi.

%K nonn

%O 1,1

%A _Hans Havermann_, Mar 20 2004