This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092353 Expansion of (1+x^3)/((1-x)^2*(1-x^3)^2). 3
 1, 2, 3, 7, 11, 15, 24, 33, 42, 58, 74, 90, 115, 140, 165, 201, 237, 273, 322, 371, 420, 484, 548, 612, 693, 774, 855, 955, 1055, 1155, 1276, 1397, 1518, 1662, 1806, 1950, 2119, 2288, 2457, 2653, 2849, 3045, 3270, 3495, 3720, 3976, 4232, 4488, 4777, 5066, 5355, 5679 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006. Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1). FORMULA G.f.: (1+x^3)/((1-x)^2*(1-x^3)^2) = (1+x^3)/((1-x)^4*(1+x+x^2)^2). a(n) = Sum(i=1..n+3, floor(i/3)^2). - Enrique Pérez Herrero, Mar 20 2012 MATHEMATICA a[n_] := Sum[Floor[i/3]^2, {i, 1, n+3}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *) PROG (Sage) def A092353():     a, b, c, m = 0, 0, 0, 0     while True:         yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+c*(c+1)*(2*c+1)+6)//6         m = m + 1 if m < 2 else 0         if   m == 0: a += 1         elif m == 1: b += 1         elif m == 2: c += 1 a = A092353() print [a.next() for _ in range(52)] # Peter Luschny, May 04 2016 CROSSREFS Cf. A005993. Sequence in context: A188529 A174060 A285278 * A189374 A180516 A100963 Adjacent sequences:  A092350 A092351 A092352 * A092354 A092355 A092356 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 20 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.