login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092353 Expansion of (1+x^3)/((1-x)^2*(1-x^3)^2). 3
1, 2, 3, 7, 11, 15, 24, 33, 42, 58, 74, 90, 115, 140, 165, 201, 237, 273, 322, 371, 420, 484, 548, 612, 693, 774, 855, 955, 1055, 1155, 1276, 1397, 1518, 1662, 1806, 1950, 2119, 2288, 2457, 2653, 2849, 3045, 3270, 3495, 3720, 3976, 4232, 4488, 4777, 5066, 5355, 5679 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).

FORMULA

G.f.: (1+x^3)/((1-x)^2*(1-x^3)^2) = (1+x^3)/((1-x)^4*(1+x+x^2)^2).

a(n) = Sum(i=1..n+3, floor(i/3)^2). - Enrique Pérez Herrero, Mar 20 2012

MATHEMATICA

a[n_] := Sum[Floor[i/3]^2, {i, 1, n+3}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *)

PROG

(Sage)

def A092353():

    a, b, c, m = 0, 0, 0, 0

    while True:

        yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+c*(c+1)*(2*c+1)+6)//6

        m = m + 1 if m < 2 else 0

        if   m == 0: a += 1

        elif m == 1: b += 1

        elif m == 2: c += 1

a = A092353()

print [a.next() for _ in range(52)] # Peter Luschny, May 04 2016

CROSSREFS

Cf. A005993.

Sequence in context: A188529 A174060 A285278 * A189374 A180516 A100963

Adjacent sequences:  A092350 A092351 A092352 * A092354 A092355 A092356

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 20 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 12:21 EST 2017. Contains 294891 sequences.