|
|
A092320
|
|
"Word-factorable" numbers, or numbers n that are divisible by the number of letters in the American English word(s) for n.
|
|
0
|
|
|
4, 6, 12, 30, 33, 36, 40, 45, 50, 54, 56, 60, 70, 81, 88, 90, 100, 112, 150, 162, 170, 200, 240, 252, 300, 304, 336, 340, 405, 406, 418, 456, 513, 525, 528, 551, 560, 567, 600, 660, 665, 666, 693, 704, 720, 748, 810, 828, 850, 858, 874, 882, 897, 910, 924, 960, 1005
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Cal Q. Leytor (obviously an alias) asked for the lowest pair of consecutive word-factorable numbers.
Lowest pair of consecutive word-factorable numbers is 405-406; next is 665-666. - Ray Chandler, Feb 16 2004
Subsequence of A002808 (composite numbers). - Ivan N. Ianakiev, Mar 01 2020
|
|
REFERENCES
|
Cal Q. Leytor, The Word Factor, GAMES, October 1986, page 52
|
|
LINKS
|
Table of n, a(n) for n=1..57.
|
|
EXAMPLE
|
"One hundred twelve" has 16 letters and 112=16*7, so 112 is a term.
|
|
MATHEMATICA
|
Select[Range[1000], Divisible[#, StringLength[StringReplace[IntegerName[#],
{"\[Hyphen]" -> "", " " -> ""}]]] &] (* Ivan N. Ianakiev, Mar 01 2020 *)
|
|
CROSSREFS
|
Sequence in context: A294489 A115076 A126259 * A056495 A263656 A178674
Adjacent sequences: A092317 A092318 A092319 * A092321 A092322 A092323
|
|
KEYWORD
|
easy,nonn,word
|
|
AUTHOR
|
Bryce Herdt (mathidentity(AT)aol.com), Feb 15 2004
|
|
EXTENSIONS
|
More terms from Ray Chandler, Feb 16 2004
|
|
STATUS
|
approved
|
|
|
|