This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092316 Sum of largest parts of all partitions of n into odd distinct parts. 3
 1, 0, 3, 3, 5, 5, 7, 12, 14, 16, 18, 27, 29, 33, 42, 55, 59, 65, 78, 95, 110, 118, 137, 167, 188, 200, 236, 274, 303, 330, 376, 435, 485, 522, 591, 677, 741, 803, 903, 1022, 1115, 1210, 1345, 1505, 1650, 1784, 1964, 2201, 2393, 2578, 2843, 3143, 3409, 3685, 4034 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES Knopfmacher, Arnold and Robbins, Neville, Identities for the total number of parts in partitions of integers. Util. Math. 67 (2005), 9-18. LINKS FORMULA G.f.: Sum((2*n-1)*x^(2*n-1)*Product(1+x^(2*k-1), k = 1 .. n-1), n = 1 .. infinity). MATHEMATICA nmax = 50; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j - 1), {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *) CROSSREFS Cf. A092319. Sequence in context: A087715 A237714 A245145 * A142456 A098508 A051593 Adjacent sequences:  A092313 A092314 A092315 * A092317 A092318 A092319 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Feb 15 2004 EXTENSIONS More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.