%I #11 Jul 07 2019 03:03:46
%S 1,2,6,7,13,20,28,34,53,71,88,117,148,188,250,301,365,472,565,688,860,
%T 1027,1224,1486,1771,2107,2524,2983,3496,4158,4867,5666,6676,7762,
%U 9021,10525,12145,14034,16249,18696,21478,24721,28308,32364,37110,42289
%N Sum of largest parts (counted with multiplicity) of all partitions of n into odd parts.
%H Vaclav Kotesovec, <a href="/A092310/b092310.txt">Table of n, a(n) for n = 1..2500</a>
%F G.f.: Sum((2*n-1)*x^(2*n-1)/(1-x^(2*n-1))/Product(1-x^(2*k-1), k = 1 .. n), n = 1 .. infinity).
%e Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6*1+1*3+2*3+1*5=20.
%t nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1)/(1 - x^(2*n - 1)) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 06 2019 *)
%Y Cf. A092314, A092322, A092269, A092309, A092321, A092313, A092311, A092268.
%K easy,nonn
%O 1,2
%A _Vladeta Jovovic_, Feb 16 2004
%E More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004