|
|
A092261
|
|
Sum of unitary, squarefree divisors of n, including 1.
|
|
10
|
|
|
1, 3, 4, 1, 6, 12, 8, 1, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 4, 1, 42, 1, 8, 30, 72, 32, 1, 48, 54, 48, 1, 38, 60, 56, 6, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 3, 72, 8, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 1, 74, 114, 4, 20, 96, 168, 80
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Unitary convolution of the sequence of n*mu^2(n) (absolute values of A055615) and A000012. - R. J. Mathar, May 30 2011
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr. 74 (1960) 66-80, sequence sigma'(n).
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
|
|
FORMULA
|
Multiplicative with a(p) = p+1 and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Feb 22 2004
From Álvar Ibeas, Mar 06 2015: (Start)
a(n) = a(A055231(n)) = A000203(A055231(n)).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(1-2s)).
(End)
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(A055231(n)).
a(n) = A000203(n) / A295294(n).
a(n) = A048250(n) / A295295(n) = A048250(n) / A048250(A057521(n)), where A057521(n) = A064549(A003557(n)).
(End)
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Jun 10 2020
|
|
MATHEMATICA
|
Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 79}] (* Michael De Vlieger, Mar 08 2015 *)
f[p_, e_] := If[e==1, p+1, 1]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 79] (* Amiram Eldar, Mar 01 2019 *)
|
|
PROG
|
(PARI) a(n) = sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 06 2015
(Scheme)
;; This implementation utilizes the memoization-macro definec for which an implementation is available at http://oeis.org/wiki/Memoization#Scheme
;; The other functions, A020639, A067029 and A028234 can be found under the respective entries, and should likewise defined with definec:
(definec (A092261 n) (if (= 1 n) 1 (* (+ 1 (if (> (A067029 n) 1) 0 (A020639 n))) (A092261 (A028234 n))))) ;; Antti Karttunen, Nov 25 2017
|
|
CROSSREFS
|
Cf. A000203, A003557, A007947, A048250, A055231, A056671, A057521, A065465, A295294, A295295.
Sequence in context: A132700 A193794 A281862 * A323159 A328181 A163762
Adjacent sequences: A092258 A092259 A092260 * A092262 A092263 A092264
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Steven Finch, Feb 20 2004
|
|
STATUS
|
approved
|
|
|
|