login
A092250
Lesser of the greatest twin prime pair with n digits.
4
5, 71, 881, 9929, 99989, 999959, 9999971, 99999587, 999999191, 9999999701, 99999999761, 999999999959, 9999999998489, 99999999999971, 999999999997967, 9999999999999641, 99999999999998807, 999999999999998927
OFFSET
1,1
COMMENTS
Sum of reciprocals = 0.215331408...
Also the numerator of the largest prime-over-prime fraction less than 1 that is the ratio of two primes both less than 10^n. - Cino Hilliard, Feb 13 2006 [edited by Jon E. Schoenfield, Dec 01 2019]
MATHEMATICA
Array[Block[{k = 10^# - 3}, While[! AllTrue[{k, k + 2}, PrimeQ], k -= 2]; k] &, 18]
PROG
(PARI) lasttwpr(n) = { sr=0; for(m=0, n, c=0; forstep(x=10^(m+1)-1, 10^m, -2, if(isprime(x)&& isprime(x-2), print1(x-2", "); sr+=1./(x-2); break) ) ); print(); print(sr) }
(PARI) apply( {A092250(n, p=10^n)=until(2==p-p=precprime(p-1), ); p}, [1..22]) \\ avoids multiple isprime(): much faster! - M. F. Hasler, Jan 17 2022
(Python)
from sympy import prevprime
def a(n):
p = prevprime(10**n); pp = prevprime(p)
while p - pp != 2: p, pp = pp, prevprime(pp)
return pp
print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Jan 17 2022
CROSSREFS
Cf. A092245.
Cf. A114429(n) = a(n)+2: largest twin prime < 10^n.
Sequence in context: A197668 A064752 A033507 * A362159 A371326 A349471
KEYWORD
base,nonn
AUTHOR
Cino Hilliard, Feb 17 2004
STATUS
approved