login
Primes that divide some Euler number.
7

%I #10 Dec 17 2012 01:08:21

%S 5,13,17,19,29,31,37,41,43,47,53,61,67,71,73,79,89,97,101,109,113,137,

%T 139,149,157,173,181,193,197,223,229,233,241,251,257,263,269,277,281,

%U 293,307,311,313,317,337,349,353,359,373,379,389,397,401,409,419,421

%N Primes that divide some Euler number.

%C For a prime p in this sequence, p will divide an Euler number E(k) for k < p. The density of these primes is approximately 0.66.

%C This sequence is the union of A002144 (primes of the form 4k+1) and A120115. Note that if prime p=1 (mod 4), then p divides E(p-1). - _T. D. Noe_, Jun 09 2006

%H T. D. Noe, <a href="/A092218/b092218.txt">Table of n, a(n) for n = 1..586</a>

%H L. Carlitz, <a href="http://dx.doi.org/10.1090/S0002-9939-1954-0061124-6">Note on irregular primes</a>, Proc. Amer. Math. Soc. 5 (1954), 329-331

%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/bernoulli/full.pdf">Prime divisors of the Bernoulli and Euler numbers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerNumber.html">Euler Number</a>

%t ee=Table[Abs[EulerE[2i]], {i, 500}]; t=Table[p=Prime[n]; cnt=0; Do[If[Mod[ee[[i]], p]==0, cnt++ ], {i, p}]; cnt, {n, PrimePi[500]}]; Prime[Select[Range[Length[t]], t[[ # ]]>0&]]

%Y Cf. A000364 (Euler numbers), A092217 (primes that do not divide any Euler number), A092219.

%K nonn

%O 1,1

%A _T. D. Noe_, Feb 25 2004