login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numbers related to triangle A092083; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
30

%I #37 Aug 28 2019 15:41:32

%S 1,7,1,91,21,1,1729,511,42,1,43225,15015,1645,70,1,1339975,523705,

%T 69300,4025,105,1,49579075,21240765,3226405,230300,8330,147,1,

%U 2131900225,984172735,166428990,13820205,621810,15386,196,1,104463111025

%N Triangle of numbers related to triangle A092083; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...

%C a(n,m) := S2(7; n,m) is the seventh triangle of numbers in the sequence S2(k;n,m), k=1..6: A008277 (unsigned Stirling 2nd kind), A008297 (unsigned Lah), A035342, A035469, A049029, A049385, respectively. a(n,1)=A008542(n), n>=1.

%C a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing 7-ary trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - _Wolfdieter Lang_, Sep 14 2007

%C Also the Bell transform of A008542(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 26 2016

%H F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://dx.doi.org/10.1007/3-540-55251-0_2">Varieties of Increasing Trees</a>, in Lecture Notes in Computer Science vol. 581, (1992), pp. 24-48.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem.</a>, arXiv:quant-phys/0402027, 2004.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://dx.doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205.

%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3

%H W. Lang, <a href="/A092082/a092082.txt">First 10 rows</a>.

%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO], 2012. - From N. J. A. Sloane, Aug 21 2012

%F a(n, m) = sum(|A051151(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. with _Wolfdieter Lang_ by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.

%F a(n, m) = n!*A092083(n, m)/(m!*6^(n-m)); a(n+1, m) = (6*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1.

%F E.g.f. for m-th column: ((-1+(1-6*x)^(-1/6))^m)/m!.

%e {1}; {7,1}; {91,21,1}; {1729,511,42,1}; ...

%p # The function BellMatrix is defined in A264428.

%p # Adds (1, 0, 0, 0, ..) as column 0.

%p BellMatrix(n -> mul(6*k+1, k=0..n), 9); # _Peter Luschny_, Jan 26 2016

%t mmax = 9; a[n_, m_] := n!*Coefficient[Series[((-1 + (1 - 6*x)^(-1/6))^m)/m!, {x, 0, mmax}], x^n];

%t Flatten[Table[a[n, m], {n, 1, mmax}, {m, 1, n}]][[1 ;; 37]] (* _Jean-François Alcover_, Jun 22 2011, after e.g.f. *)

%t rows = 9;

%t t = Table[Product[6k+1, {k, 0, n}], {n, 0, rows}];

%t T[n_, k_] := BellY[n, k, t];

%t Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018, after _Peter Luschny_ *)

%Y Cf. A092084 (row sums), A092085 (alternating row sums).

%K nonn,easy,tabl

%O 1,2

%A _Wolfdieter Lang_, Mar 19 2004