login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092076 Expansion of (1+4*x^3+x^6)/((1-x)*(1-x^3)^2). 0
1, 1, 1, 7, 7, 7, 19, 19, 19, 37, 37, 37, 61, 61, 61, 91, 91, 91, 127, 127, 127, 169, 169, 169, 217, 217, 217, 271, 271, 271, 331, 331, 331, 397, 397, 397, 469, 469, 469, 547, 547, 547, 631, 631, 631, 721, 721, 721, 817, 817, 817, 919, 919, 919, 1027, 1027, 1027, 1141, 1141 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..58.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).

FORMULA

G.f.: (1+4*x^3+x^6)/((1-x)*(1-x^3)^2).

a(n) = a(n-1)+2*a(n-3)-2*a(n-4)-a(n-6)+a(n-7), n>7. - Wesley Ivan Hurt, Jun 23 2015

A003215 with each term repeated three times: a(n) = A003215(floor(n/3)). - Robert Israel, Jul 14 2015

MAPLE

f:= gfun:-rectoproc({q(n+3)-3*q(n+2)+3*q(n+1)-q(n), q(0) = 1, q(1) = 7, q(2) = 19}, q(n), remember):

seq(f(i)$3, i=0..30); # Robert Israel, Jul 14 2015

MATHEMATICA

CoefficientList[Series[(1 + 4*x^3 + x^6)/((1 - x)*(1 - x^3)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 23 2015 *)

LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 7, 7, 7, 19}, 60] (* Vincenzo Librandi, Jul 13 2015

PROG

(MAGMA) I:=[1, 1, 1, 7, 7, 7, 19]; [n le 7 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Jul 13 2015

CROSSREFS

Cf. A003215.

Sequence in context: A266952 A245423 A242889 * A117981 A024955 A088467

Adjacent sequences:  A092073 A092074 A092075 * A092077 A092078 A092079

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 29 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 22:02 EDT 2017. Contains 284182 sequences.