login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092070 Molien series for genus 2 complete weight enumerators of self-dual codes over GF(3) containing the all-ones vector. 0
1, 2, 13, 87, 472, 2099, 7651, 23632, 64007, 155869, 347888, 722562, 1412787, 2623960, 4663042, 7975064, 13188959, 21174366, 33109962, 50565794, 75601497, 110881127, 159807508, 226678408, 316865230, 437017617, 595296931, 801638887, 1068049576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The invariant ring for a 9-dimensional group Z_4 X 3^{1+4}_{+}.SP_4(3) of order 50388480.

LINKS

Table of n, a(n) for n=0..28.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

MAPLE

(Maple code for Molien series:)

f := 1+8*t^2+60*t^3+292*t^4+1090*t^5+3127*t^6+7116*t^7 +13411*t^8 + 21536*t^9+29963*t^10+36631*t^11+39638*t^12 +37973*t^13+32135*t^14+ 23906*t^15+15462*t^16+8507*t^17 +3858*t^18+1369*t^19+342*t^20+52*t^21+3*t^22;

u1 := subs(t=t^12, f); u2 := (1-t^12)^2*(1-t^24)^2*(1-t^36)^3*(1-t^60)^2; MS := u1/u2;

CROSSREFS

Sequence in context: A164035 A074619 A162275 * A091116 A091099 A092849

Adjacent sequences:  A092067 A092068 A092069 * A092071 A092072 A092073

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 30 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:30 EST 2019. Contains 319218 sequences. (Running on oeis4.)