|
|
A092043
|
|
Numerator of n!/n^2.
|
|
5
|
|
|
1, 1, 2, 3, 24, 20, 720, 630, 4480, 36288, 3628800, 3326400, 479001600, 444787200, 5811886080, 81729648000, 20922789888000, 19760412672000, 6402373705728000, 6082255020441600, 115852476579840000, 2322315553259520000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numerator of expansion of dilog(x) = Li_2(x) = - int(0, x, log(1-t)/t*dt). See the Weisstein link.
E.g.f. of {a(n)/A014973(n)}_{n>=1} is Li_2(x) (with 0 for n=0).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
A. N. Kirillov, Dilogarithm identities, arXiv:hep-th/9408113, 1994.
Eric Weisstein's World of Mathematics, Dilogarithm
|
|
FORMULA
|
From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(n!/n^2) = numerator((n-1)!/n), n >= 1. See the name.
E.g.f. {a(n)/A014973(n)}_{n>=1} with 0 for n=0 is Li_2(x). See the comment.
(-1)^n*a(n+1)/A014973(n+1) = (-1)^n*n!/(n+1) = Sum_{k=0..n} Stirling1(n, k)*Bernoulli(k), with Stirling1 = A048994 and Bernoulli(k) = A027641(k)/A027642(k), n >= 0. From inverting the formula for B(k) in terms of Stirling2 = A048993.(End)
|
|
MATHEMATICA
|
Table[Numerator[n!/n^2], {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
Table[(n-1)!/n, {n, 30}]//Numerator (* Harvey P. Dale, Apr 03 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(n!/n^2)
(PARI) a(n)=numerator(polcoeff(serlaplace(dilog(x)), n))
(MAGMA) [Numerator(Factorial(n)/n^2): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
|
|
CROSSREFS
|
Denominator is in A014973. Cf. A001819.
Sequence in context: A170909 A160606 A099617 * A055067 A037319 A032811
Adjacent sequences: A092040 A092041 A092042 * A092044 A092045 A092046
|
|
KEYWORD
|
nonn,easy,frac
|
|
AUTHOR
|
Ralf Stephan, Mar 28 2004
|
|
EXTENSIONS
|
Comment rewritten by Wolfdieter Lang, Apr 28 2017
|
|
STATUS
|
approved
|
|
|
|