This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091971 G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)). 0
 1, 0, 0, 1, 1, 2, 2, 1, 3, 4, 4, 5, 5, 6, 8, 9, 9, 10, 12, 13, 15, 16, 16, 19, 21, 22, 24, 25, 27, 30, 32, 33, 35, 38, 40, 43, 45, 46, 50, 53, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 86, 89, 91, 96, 100, 103, 107, 110, 114, 119, 123, 126, 130, 135, 139, 144, 148, 151, 157, 162, 166 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Let G = G_2(q) or ^3D_4(q) with q == 1 mod 4. The PoincarĂ© series (or Molien series) for G is independent of q and is given here. REFERENCES A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 242. LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,-1,0,-1,1). FORMULA G.f.: -(x^4-x^3+x^2-x+1)*(x^4-x^2+1) / ( (1+x+x^2)*(x^4+x^3+x^2+x+1)*(x-1)^3 ). - R. J. Mathar, Sep 27 2014 MATHEMATICA CoefficientList[Series[(1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 1, -1, 1, -1, 0, -1, 1}, {1, 0, 0, 1, 1, 2, 2, 1, 3}, 80] (* Harvey P. Dale, Feb 19 2017 *) CROSSREFS Sequence in context: A276325 A286548 A256134 * A065185 A289412 A266504 Adjacent sequences:  A091968 A091969 A091970 * A091972 A091973 A091974 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.