

A091971


G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1x^4)*(1x^5)*(1x^6)).


0



1, 0, 0, 1, 1, 2, 2, 1, 3, 4, 4, 5, 5, 6, 8, 9, 9, 10, 12, 13, 15, 16, 16, 19, 21, 22, 24, 25, 27, 30, 32, 33, 35, 38, 40, 43, 45, 46, 50, 53, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 86, 89, 91, 96, 100, 103, 107, 110, 114, 119, 123, 126, 130, 135, 139, 144, 148, 151, 157, 162, 166
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Let G = G_2(q) or ^3D_4(q) with q == 1 mod 4. The PoincarĂ© series (or Molien series) for G is independent of q and is given here.


REFERENCES

A. Adem and R. J. Milgram, Cohomology of Finite Groups, SpringerVerlag, 2nd. ed., 2004; p. 242.


LINKS

Table of n, a(n) for n=0..70.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1,1,1,0,1,1).


FORMULA

G.f.: (x^4x^3+x^2x+1)*(x^4x^2+1) / ( (1+x+x^2)*(x^4+x^3+x^2+x+1)*(x1)^3 ).  R. J. Mathar, Sep 27 2014


MATHEMATICA

CoefficientList[Series[(1+x^3)*(1+x^5)*(1+x^6)/((1x^4)*(1x^5)*(1x^6)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 1, 1, 1, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 2, 2, 1, 3}, 80] (* Harvey P. Dale, Feb 19 2017 *)


CROSSREFS

Sequence in context: A276325 A286548 A256134 * A065185 A289412 A266504
Adjacent sequences: A091968 A091969 A091970 * A091972 A091973 A091974


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Mar 15 2004


STATUS

approved



