login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091971 G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)). 0
1, 0, 0, 1, 1, 2, 2, 1, 3, 4, 4, 5, 5, 6, 8, 9, 9, 10, 12, 13, 15, 16, 16, 19, 21, 22, 24, 25, 27, 30, 32, 33, 35, 38, 40, 43, 45, 46, 50, 53, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 86, 89, 91, 96, 100, 103, 107, 110, 114, 119, 123, 126, 130, 135, 139, 144, 148, 151, 157, 162, 166 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Let G = G_2(q) or ^3D_4(q) with q == 1 mod 4. The Poincaré series (or Molien series) for G is independent of q and is given here.

REFERENCES

A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 242.

LINKS

Table of n, a(n) for n=0..70.

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,-1,0,-1,1).

FORMULA

G.f.: -(x^4-x^3+x^2-x+1)*(x^4-x^2+1) / ( (1+x+x^2)*(x^4+x^3+x^2+x+1)*(x-1)^3 ). - R. J. Mathar, Sep 27 2014

MATHEMATICA

CoefficientList[Series[(1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 1, -1, 1, -1, 0, -1, 1}, {1, 0, 0, 1, 1, 2, 2, 1, 3}, 80] (* Harvey P. Dale, Feb 19 2017 *)

CROSSREFS

Sequence in context: A276325 A286548 A256134 * A065185 A289412 A266504

Adjacent sequences:  A091968 A091969 A091970 * A091972 A091973 A091974

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 15 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 10:48 EST 2017. Contains 294963 sequences.