This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091963 a(n) is the smallest gcd of two interior numbers on row n of Pascal's triangle ("interior" means that the 1's at the ends of the rows are excluded). 3
 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 3, 13, 2, 3, 2, 17, 2, 19, 4, 3, 2, 23, 3, 5, 2, 3, 4, 29, 6, 31, 2, 3, 2, 5, 4, 37, 2, 3, 5, 41, 6, 43, 4, 3, 2, 47, 3, 7, 2, 3, 4, 53, 2, 5, 7, 3, 2, 59, 4, 61, 2, 7, 2, 5, 6, 67, 4, 3, 10, 71, 4, 73, 2, 3, 4, 7, 2, 79, 5, 3, 2, 83, 12, 5, 2, 3, 4, 89, 9, 7, 4, 3, 2, 5, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The reference contains a simple proof that there are no 1's in this sequence. REFERENCES R. K. Guy, Unsolved Problems in Number Theory, Sections B31, B33. LINKS Robert Israel, Table of n, a(n) for n = 2..10000 EXAMPLE In row 8, the interior numbers 8, 28, 56 and 70; gcd(8, 28) = 4; gcd(8, 56) = 8; gcd(8, 70) = 2; gcd(28, 56) = 28; gcd(28, 70) = 14; gcd(56, 70) = 14. The smallest of these is 2, so a(8) = 2. MAPLE seq(min(seq(igcd(n, binomial(n, k)), k=1..floor(n/2))), n=2..100); # Robert Israel, Jun 17 2014 PROG (PARI) a(n) = {v = vector(n\2, i, binomial(n, i)); mgcd = n; for (i=1, #v, for (j=i+1, #v, mgcd = min(gcd(v[i], v[j]), mgcd); ); ); return (mgcd); } \\ Michel Marcus, Jun 16 2013 CROSSREFS Cf. A014410. Sequence in context: A214606 A079879 A071889 * A067695 A285336 A273282 Adjacent sequences:  A091960 A091961 A091962 * A091964 A091965 A091966 KEYWORD nonn AUTHOR David Wasserman, Mar 13 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 05:50 EDT 2018. Contains 316519 sequences. (Running on oeis4.)