This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091914 a(n) = 2*a(n-1) + 12*a(n-2). 18
 1, 2, 16, 56, 304, 1280, 6208, 27776, 130048, 593408, 2747392, 12615680, 58200064, 267788288, 1233977344, 5681414144, 26170556416, 120518082560, 555082842112, 2556382674944, 11773759455232, 54224111009792, 249733335482368 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of 1,1,13,13,169,169,.... The inverse binomial transform of 2^n*c(n), where c(n) is the solution to c(n)=c(n-1)+kc(n-2), a(0)=1,a(1)=1 is 1,1,4k+1,4k+1,(4k+1)^2,... LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,12). FORMULA a(n) = A000079(n)*A006130(n). G.f.: 1/(1-2*x-12*x^2). a(n) = ((1+sqrt(13))*(1+sqrt(13))^n - (1-sqrt(13))*(1-sqrt(13))^n) /(2*sqrt(13)). a(n) = Sum_{k=0..floor(n/2)} C(n+1,2*k+1) * 13^k. - Paul Barry, Jan 15 2007 MAPLE a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then 2*procname(n-1) + 12*procname(n-2) fi; end: # Muniru A Asiru, Jan 31 2018 MATHEMATICA Join[{a=1, b=2}, Table[c=2*b+12*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011*) LinearRecurrence[{2, 12}, {1, 2}, 30] (* or *) With[{s=Sqrt[13]}, Table[ Simplify[ -(((13+s)((1-s)^n-(1+s)^n))/(26(1+s)))], {n, 30}]] (* Harvey P. Dale, May 25 2013 *) PROG (Sage) [lucas_number1(n, 2, -12) for n in xrange(1, 24)] # Zerinvary Lajos, Apr 22 2009 (PARI) x='x+O('x^30); Vec(1/(1-2*x-12*x^2)) \\ G. C. Greubel, Jan 30 2018 (MAGMA) Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!(1/(1-2*x-12*x^2))) // G. C. Greubel, Jan 30 2018 (GAP) a := [1, 2];; for n in [3..350] do a[n] := 2*a[n-1] + 12*a[n-2]; od; a; # Muniru A Asiru, Jan 31 2018 CROSSREFS Cf. A003683, A063727. Sequence in context: A225051 A033431 A107610 * A123791 A293620 A206980 Adjacent sequences:  A091911 A091912 A091913 * A091915 A091916 A091917 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 18:45 EST 2019. Contains 319165 sequences. (Running on oeis4.)