login
A091881
Expansion of (1-11x)/((1-x)(1-16x)).
2
1, 6, 86, 1366, 21846, 349526, 5592406, 89478486, 1431655766, 22906492246, 366503875926, 5864062014806, 93824992236886, 1501199875790166, 24019198012642646, 384307168202282326, 6148914691236517206
OFFSET
0,2
COMMENTS
With interpolated zeros, this is the multinomial expression sum{i=0..n,sum{j=0..n,sum{k=0..n,if (mod(n-2i-4j-4k,6)=0,n!/(i!j!k!(n-i-j-k)!),0)}}}. Binomial transform of A091882.
FORMULA
a(n) = 16^n/3 + 2/3; a(n) = A001045(4*n) + 1.
a(0)=1, a(1)=6, a(n) = 17*a(n-1) - 16*a(n-2) [Harvey P. Dale, Dec 15 2011]
a(n) = A078008(4n). - Oboifeng Dira, May 29 2020
MATHEMATICA
CoefficientList[Series[(1-11x)/((1-x)(1-16x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{17, -16}, {1, 6}, 30] (* Harvey P. Dale, Dec 15 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 10 2004
STATUS
approved