%I #37 Feb 13 2024 12:21:53
%S 1,4,7,11,13,16,19,21,25,28,31,35,37,41,44,47,49,52,55,59,61,64,67,69,
%T 73,76,79,81,84,87,91,93,97,100,103,107,109,112,115,117,121,124,127,
%U 131,133,137,140,143,145,148,151,155,157,161,164,167,171,173,176,179,181
%N Odious numbers (see A000069) in A003159.
%C Also n such that A033485(n) == 1 (mod 4); see A007413.
%C Also n such that A029883(n-1) = 1, A036577(n-1) = 2, A036585(n-1) = 3. - _Philippe Deléham_, Mar 25 2004
%C The number of odd numbers before the n-th even number in this sequence is a(n). - _Philippe Deléham_, Mar 27 2004
%C Numbers n such that {A010060(n-1), A010060(n)}={0,1} where A010060 is the Thue-Morse sequence. - _Benoit Cloitre_, Jun 16 2006
%C Positive integers not of the form n+A010060(n). - _Jeffrey Shallit_, Feb 13 2024
%H G. C. Greubel, <a href="/A091855/b091855.txt">Table of n, a(n) for n = 1..10000</a>
%H Aviezri S. Fraenkel, <a href="http://dx.doi.org/10.1016/j.disc.2011.03.032">The vile, dopey, evil and odious game players</a>, Discrete Math. 312 (2012), no. 1, 42-46.
%H <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>.
%F a(n) = A003159(2n-1) = A036554(2n-1)/2.
%F a(n) is asymptotic to 3*n - _Benoit Cloitre_, Mar 22 2004
%F A050292(a(n)) = 2n - 1. - _Philippe Deléham_, Mar 26 2004
%t A036554 := Select[Range[70500], OddQ[IntegerExponent[#, 2]] &]; Table[ A036554[[2*n - 1]]/2, {n, 1, 100}] (* _G. C. Greubel_, Jan 14 2018 *)
%o (PARI) is(n)=hammingweight(n)%2 && valuation(n,2)%2==0 \\ _Charles R Greathouse IV_, May 09 2016
%K easy,nonn
%O 1,2
%A _Philippe Deléham_, Mar 16 2004
%E More terms from _Benoit Cloitre_, Mar 22 2004