|
|
|
|
1, 4, 7, 11, 13, 16, 19, 21, 25, 28, 31, 35, 37, 41, 44, 47, 49, 52, 55, 59, 61, 64, 67, 69, 73, 76, 79, 81, 84, 87, 91, 93, 97, 100, 103, 107, 109, 112, 115, 117, 121, 124, 127, 131, 133, 137, 140, 143, 145, 148, 151, 155, 157, 161, 164, 167, 171, 173, 176, 179, 181
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also n such that A033485(n) == 1 (mod 4); see A007413.
Also n such that A029883(n-1) = 1, A036577(n-1) = 2, A036585(n-1) = 3. - Philippe Deléham, Mar 25 2004
The number of odd numbers before the n-th even number in this sequence is a(n). - Philippe Deléham, Mar 27 2004
Numbers n such that {A010060(n-1), A010060(n)}={0,1} where A010060 is the Thue-Morse sequence. - Benoit Cloitre, Jun 16 2006
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Math. 312 (2012), no. 1, 42-46.
Index entries for 2-automatic sequences.
|
|
FORMULA
|
a(n) = A003159(2n-1) = A036554(2n-1)/2.
a(n) is asymptotic to 3*n - Benoit Cloitre, Mar 22 2004
A050292(a(n)) = 2n - 1. - Philippe Deléham, Mar 26 2004
|
|
MATHEMATICA
|
A036554 := Select[Range[70500], OddQ[IntegerExponent[#, 2]] &]; Table[ A036554[[2*n - 1]]/2, {n, 1, 100}] (* G. C. Greubel, Jan 14 2018 *)
|
|
PROG
|
(PARI) is(n)=hammingweight(n)%2 && valuation(n, 2)%2==0 \\ Charles R Greathouse IV, May 09 2016
|
|
CROSSREFS
|
Sequence in context: A214975 A310720 A310721 * A191404 A288374 A308199
Adjacent sequences: A091852 A091853 A091854 * A091856 A091857 A091858
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Philippe Deléham, Mar 16 2004
|
|
EXTENSIONS
|
More terms from Benoit Cloitre, Mar 22 2004
|
|
STATUS
|
approved
|
|
|
|