This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091833 Pierce expansion of 1/zeta(2). 0


%S 2,4,7,22,29,51,173,210,262,417,746,12341,207220,498538,1286415,

%T 2351289,3702952,7664494,54693034,75971438,269954954,6674693008,

%U 13449203581,59799655308,98912303039,948887634688,3557757020909,5898230078743

%N Pierce expansion of 1/zeta(2).

%C If u(0)=exp(1/m) m integer>=1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n

%D P. Erdos and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no.1, 43-53.

%H Author?, <a href="http://www.econ.upf.es/deehome/what/wpapers/postscripts/340.pdf">On a problem of Alfred Renyi </a>

%H Vlado Keselj, <a href="http://www.cs.uwaterloo.ca/cs-archive/CS-1996/21/cs-96-21.pdf">Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations </a>.

%H Jeffrey Shallit, <a href="http://www.cs.uwaterloo.ca/~shallit/Papers/sppe.ps">Some predictable Pierce expansions</a>, Fib. Quart., 22 (1984), 332-335.

%F let u(0)=Pi^2/6 and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n))

%F 1/zeta(2) = 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4)...

%F limit n ->infty a(n)^(1/n)=e

%o (PARI) r=zeta(2);for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))

%Y Cf. A006275, A006276, A006283.

%Y Cf. A006784 (Pierce expansion definition), A059186.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Mar 09 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 23:01 EST 2015. Contains 264511 sequences.