login
A091740
Third column (k=4) sequence of array A091534 ((5,2)-Stirling2).
0
1, 290, 71320, 22097600, 8928102400, 4644244774400, 3046988353024000, 2470747704449024000, 2431736840968314880000, 2859398101389251502080000, 3962371103307529193881600000, 6394280010754055221811609600000
OFFSET
2,2
FORMULA
a(n)=A091534(n, 4), n>=2.
a(n)= (3^(2*n))*(6*risefac(2/3, n)*risefac(1/3, n) - 4*n!*risefac(2/3, n) + risefac(4/3, n)*n!)/4!, with risefac(x, n)=Pochhammer(x, n).
E.g.f.: (6*hypergeom([2/3, 1/3], [], 9*x) - 4*hypergeom([1, 2/3], [], 9*x) + hypergeom([4/3, 1], [], 9*x) - 3)/4!.
a(n)= (6*fac3(3*n-2)*fac3(3*n-1)-4*fac3(3*n-1)*fac3(3*n)+fac3(3*n)*fac3(3*n+1))/4!, n>=2, with fac3(n)=A007661(n) (triple factorials). Rewritten from eq.12 of the Blasiak et al. reference given in A091534 for r=5, s=2, k=4.
CROSSREFS
Cf. A091539 (second column of array A091534 divided by 10).
Sequence in context: A335613 A369396 A186548 * A098250 A031515 A352536
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 13 2004
STATUS
approved