login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091698 Matrix inverse of triangle A063967. 4

%I

%S 1,-1,1,1,-3,1,-1,8,-5,1,1,-23,19,-7,1,-1,74,-69,34,-9,1,1,-262,256,

%T -147,53,-11,1,-1,993,-986,615,-265,76,-13,1,1,-3943,3935,-2571,1235,

%U -431,103,-15,1,-1,16178,-16169,10862,-5591,2216,-653,134,-17,1,1

%N Matrix inverse of triangle A063967.

%C Riordan array (1/(1+x), (sqrt(1+6x+5x^2)-x-1)/(2(1+x))). The absolute value array is (1/(1-x),xc(x)/(1-xc(x))) where c(x) is the g.f. of A000108. It factorizes as (1/(1-x),x/(1-x))(1,xc(x)). - _Paul Barry_, Jun 10 2005

%H L. K. Pudwell, <a href="http://arxiv.org/abs/1408.6823">Ascent sequences and the binomial convolution of Catalan numbers</a>, arXiv preprint arXiv:1408.6823, 2014

%e From _Paul Barry_, Apr 15 2010: (Start)

%e Triangle begins

%e 1,

%e -1, 1,

%e 1, -3, 1,

%e -1, 8, -5, 1,

%e 1, -23, 19, -7, 1,

%e -1, 74, -69, 34, -9, 1,

%e 1, -262, 256, -147, 53, -11, 1,

%e -1, 993, -986, 615, -265, 76, -13, 1,

%e 1, -3943, 3935, -2571, 1235, -431, 103, -15, 1

%e Production matrix begins

%e -1, 1,

%e 0, -2, 1,

%e 0, 1, -2, 1,

%e 0, -1, 1, -2, 1,

%e 0, 1, -1, 1, -2, 1,

%e 0, -1, 1, -1, 1, -2, 1,

%e 0, 1, -1, 1, -1, 1, -2, 1,

%e 0, -1, 1, -1, 1, -1, 1, -2, 1,

%e 0, 1, -1, 1, -1, 1, -1, 1, -2, 1,

%e 0, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1 (End)

%t rows = 11; t[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; T = Table[t[n, k], {n, 0, rows - 1}, {k, 0, rows - 1}] // Inverse; Table[ T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-Fran├žois Alcover_, Oct 11 2017 *)

%Y Row sums: A091699. Row sums (absolute values): A007317. Column 1: A050511.

%K sign,tabl

%O 0,5

%A _Christian G. Bower_, Jan 29 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 01:17 EDT 2019. Contains 323534 sequences. (Running on oeis4.)