OFFSET
1,2
COMMENTS
Equivalently, the number of radial cutting patterns of a (maximally symmetric) circular cake such that all resulting pieces are a multiple of 1/n of the whole. - Peter Munn, Oct 27 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = A000029(n) - 1.
a(n) = A056342(n) + 1.
G.f.: ( Sum_{n>=1} phi(n)*log(2+1/(-1+x^n))/n + (1-1x^2+x^3)/((x-1)*(1-2*x^2)) )/(-2). - Herbert Kociemba, Dec 04 2016
EXAMPLE
7 has 15 partitions and 64 compositions. Compositions can be mapped to other compositions by reflection, cycling, or both, e.g., {1,2,4} -> {4,2,1} (reflection), {2,4,1} (cycling), or {1,4,2} (both); this defines the equivalence relation used. The number of equivalence classes so defined is 2 greater than the number of partitions because only {3,1,2,1} and {2,1,2,1,1} (and their equivalents) cannot be mapped to the conventionally stated forms of partitions (here, {3,2,1,1} and {2,2,1,1,1} respectively). So a(7) = 15 + 2 = 17.
MAPLE
with(numtheory):
a:= n-> add(phi(d)*2^(n/d)/(2*n), d=divisors(n))
+`if`(irem(n, 2)=0, 2^(n/2-1) +2^(n/2-2), 2^((n-1)/2)) -1:
seq(a(n), n=1..40); # Alois P. Heinz, Oct 20 2012
MATHEMATICA
Needs["Combinatorica`"]
nn=40; Apply[Plus, Table[CoefficientList[Series[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->x^i/(1-x^i), {i, 1, nn}], {x, 0, nn}], x], {n, 1, nn}]] (* Geoffrey Critzer, Oct 18 2012 *)
mx:=50; CoefficientList[Series[(Sum[(EulerPhi[n] Log[2+1/(-1+x^n)])/n, {n, 1, mx}]+(1-1x^2+ x^3)/((x-1) (1-2 x^2)))/(-2), {x, 0, mx}], x] (* Herbert Kociemba, Dec 04 2016 *)
a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n) - 1; Array[a, 37] (* Jean-François Alcover, Nov 05 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Neil Fernandez, Jan 29 2004
EXTENSIONS
More terms from Sean A. Irvine, Feb 09 2012
STATUS
approved