%I #13 Feb 16 2025 08:32:52
%S 4,9,30,40,44,130,276,647,791,878,1008,3041,3200,3384,5606,9721,17899,
%T 22640,34070,34152,37648,91193,134943,152617,158172,190950,258992,
%U 315679,525765,558041,734305,1500708,1669873,1873804,1936902,4278672,5227319,7385934,7876549,10765774,11396841,11466234,12994613,19147251,31403937,43166470
%N When A032523 is a maximum; or, A091657 less duplicates.
%C Each entry is enumerated: 1,2,1,2,1,1,2,6,8,4,1,1,1,1,1,1,1,1,1,8,6,... in A091657.
%C The 4278672nd term of the continued fraction expansion of Pi is 837.
%H H. Havermann, <a href="http://chesswanks.com/pxp/cfpifoi.html">3131 terms of a trivial variation (first term of pi excluded) of A032523</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction.</a>
%e One has to go to the 30th term of the continued fraction of Pi (4) to have seen the integers 1, 2, 3 & 4.
%t cfpi = ContinuedFraction[Pi, 10000000]; a = Table[0, {1562}]; Do[b = cfpi[[n]]; If[b < 1563 && a[[b]] == 0, a[[b]] = n], {n, 1, 10000000}]; c
%Y Cf. A001203, A032523, A091657.
%K nonn,changed
%O 1,1
%A _Robert G. Wilson v_, Jan 26 2004