login
A smoothed version of A091587.
4

%I #47 Nov 22 2022 22:36:18

%S 1,3,8,24,67,195,580,1730,5179,15533,46578,139712,419115,1257319,

%T 3771930,11315764,33947261,101841751,305525228,916575642,2749726883

%N A smoothed version of A091587.

%C Each term is roughly 3 times the previous term.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Sloane/sloane55.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].

%H Levi van de Pol, <a href="https://arxiv.org/abs/2209.04657">The first occurrence of a number in Gijswijt's sequence</a>, arXiv:2209.04657 [math.CO], 2022.

%H <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>

%F a(n+1) = a(n) + A357063(n+1) + A091840(n+1). See Conjecture 4.2 of F. J. van de Bult et al., proved p. 54 of Levi van de Pol. - _Levi van de Pol_, Nov 04 2022

%Y Records in A091839. Cf. A090822, A091587, A091587, A217590.

%K nonn,more

%O 0,2

%A _N. J. A. Sloane_, Mar 05 2004

%E a(10)-a(13) from _Allan Wilks_, Mar 10 2004

%E a(14)-a(20) from _Alexander Staunton_, Apr 09 2022

%E Removed an incorrect program. - _N. J. A. Sloane_, Aug 20 2022