login
A091539
Second column (k=3) of array A091534 ((5,2)-Stirling2) divided by 10.
3
1, 104, 16192, 3745280, 1222291840, 537758144000, 307503360102400, 221965373351321600, 197530935371241472000, 212553938009841139712000, 272115940122123843665920000, 408828811133790954169303040000
OFFSET
2,2
FORMULA
a(n) = A091534(n, 3)/10, n >= 2.
a(n) = Product_{j=0..n-1} (3*j + 2)*(Product_{j=0..n-1} (3*(j+1)) - 3*Product_{j=0..n-1} (3*j + 1))/(3!*10). From eq. (12) of the Blasiak et al. reference (see A091534) for r=5, s=2 and k=3.
a(n)= (3^(2*n))*risefac(2/3, n)*(n!-3*risefac(1/3, n))/(3!*10), with risefac(x, n)=Pochhammer(x, n).
a(n)= (fac3(3*n-1)/10)*(fac3(3*n) - 3*fac3(3*n-2))/3!, with fac3(3*n) := A032031(n)= n!*3^n, fac3(3*n-1) := A008544(n) and fac3(3*n-2)=A007559(n) (triple factorials: fac3(n)=A007661(n)).
E.g.f.: (hypergeom([2/3, 1], [], 9*x)-3*hypergeom([1/3, 2/3], [], 9*x)+2)/(3!*10).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 13 2004
STATUS
approved