login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091518 Decimal expansion of the hyperbolic volume of the figure eight knot complement. 1
2, 0, 2, 9, 8, 8, 3, 2, 1, 2, 8, 1, 9, 3, 0, 7, 2, 5, 0, 0, 4, 2, 4, 0, 5, 1, 0, 8, 5, 4, 9, 0, 4, 0, 5, 7, 1, 8, 8, 3, 3, 7, 8, 6, 1, 5, 0, 6, 0, 5, 9, 9, 5, 8, 4, 0, 3, 4, 9, 7, 8, 2, 1, 3, 5, 5, 3, 1, 9, 4, 9, 5, 2, 5, 1, 6, 4, 8, 8, 0, 4, 4, 2, 7, 2, 9, 4, 0, 7, 0, 8, 4, 5, 6, 5, 1, 3, 3, 8, 9, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Decimal expansion of -6*int_{x=0..Pi/3} log|2*sin(x)| dx. - Jonathan Sondow, Oct 15 2015

LINKS

Table of n, a(n) for n=1..102.

D. H. Bailey and J. M. Borwein, Experimental Mathematics: Examples, Methods and Implications p. 4-5.

J. Milnor, Topology through the centuries: Low dimensional manifolds, Bull. Amer. Math. Soc., 52 (2015), 545-584; see p. 562.

Eric Weisstein's World of Mathematics, Figure Eight Knot

EXAMPLE

2.02988321...

MATHEMATICA

RealDigits[N[2*Pi/3 - 1/18*HypergeometricPFQ[{3/2, 3/2, 3/2}, {5/2, 5/2}, 1/4], 102]][[1]] (* Jean-Fran├žois Alcover, Nov 12 2012, after Eric W. Weisstein *)

PROG

(PARI) 2*suminf(k=0, binomial(2*k, k)/16^k/(2*k+1)^2) \\ Charles R Greathouse IV, Oct 15 2014

CROSSREFS

Sequence in context: A259356 A137302 A265607 * A096734 A220234 A038020

Adjacent sequences:  A091515 A091516 A091517 * A091519 A091520 A091521

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jan 17 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 10:23 EST 2016. Contains 278971 sequences.