This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091514 Primes of the form (2^n + 1)^2 - 2 = 4^n + 2^(n+1) - 1. 9

%I

%S 2,7,23,79,1087,66047,263167,16785407,1073807359,17180131327,

%T 68720001023,4398050705407,70368760954879,18014398777917439,

%U 18446744082299486207,5070602400912922109586440191999

%N Primes of the form (2^n + 1)^2 - 2 = 4^n + 2^(n+1) - 1.

%C Cletus Emmanuel calls these "Kynea primes".

%H Vincenzo Librandi, <a href="/A091514/b091514.txt">Table of n, a(n) for n = 1..30</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Near-SquarePrime.html">Near-Square Prime</a>

%F a(n) = (2^A091513(n) + 1)^2 - 2.

%p select(isprime,[seq((2^n+1)^2-2, n=0..1000)]); # _Robert Israel_, Feb 10 2016

%t lst={};Do[If[PrimeQ[p=4^n+2^(n+1)-1], (*Print[p];*)AppendTo[lst, p]], {n, 10^2}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *)

%t Select[Table[(2^n + 1)^2 - 2, {n, 0, 50}], PrimeQ] (* _Eric W. Weisstein_, Feb 10 2016 *)

%o (MAGMA) [a: n in [0..60] | IsPrime(a) where a is 4^n+2^(n+1)-1]; // _Vincenzo Librandi_, Dec 13 2011

%o (PARI) select(isprime, vector(100,n,(2^n+1)^2-2)) \\ _Charles R Greathouse IV_, Feb 19 2016

%Y Cf. A093069 (numbers of the form (2^n + 1)^2 - 2).

%Y Cf. A091513 (indices n such that (2^n + 1)^2 - 2 is prime).

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Jan 17 2004

%E Edited by _Ray Chandler_, Nov 15 2004

%E First term (2) added by _Vincenzo Librandi_, Dec 13 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.