%I #11 Dec 26 2019 14:44:15
%S 17,323,6506,130664,2624438,52713275,1058774426,21266052797,
%T 427140088670
%N a(n) is the smallest j such that 1/2 + 1/5 + 1/8 + ... + 1/j exceeds n.
%F The next term is approximately the previous term * e^3.
%t s = 0; k = 2; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]
%Y Cf. A002387, A056053, A056054, A091462, A091463.
%K nonn,more
%O 1,1
%A _Robert G. Wilson v_, Jan 12 2004
%E a(8)-a(9) from _Hugo Pfoertner_, Dec 26 2019