login
Lengths of the B blocks in analysis of A090822.
7

%I #14 Aug 05 2018 11:59:20

%S 1,3,9,19,47,98,220,441,885,1771,3551,7106,14279,28559,57121,114243,

%T 228495,456994,914012,1828025,3656053,7312107,14624223,29248450,

%U 58497096,116994195,233988391,467976791,935953586,1871907196

%N Lengths of the B blocks in analysis of A090822.

%C Also, values of len_y(n) when len_x(n) = 0 in A090822.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Sloane/sloane55.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].

%H <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>

%F a(1) = 1; for n > 1, a(n+1) = 2*a(n) + A091579(n).

%F This roughly doubles at each step and a(n) -> 1.743349432191828... * 2^n.

%Y Cf. A090822, A091579, A091410, A095828.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Mar 04 2004

%E 14279 and 28559 from _Allan Wilks_, Mar 04 2004

%E Extended by _N. J. A. Sloane_, Mar 06 2004