login
A091382
Distance between the sequence of primes and the largest "mixed" quadratic residues modulo the primes (A091380).
5
1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 7, 5, 2, 3, 2, 3, 2, 2, 3, 7, 7, 2, 3, 5, 2, 3, 2, 3, 2, 2, 2, 11, 5, 2, 2, 5, 2, 2, 3, 7, 3, 2, 2, 5, 2, 2, 3, 7, 2, 2, 7, 5, 3, 2, 3, 5, 2, 3, 2, 13, 3, 2, 2, 5, 2, 3, 2, 2
OFFSET
1,2
COMMENTS
Apart from the first term, it contains solely primes. Is every prime in there?
Apart from the first term and the definition, it is identical to the sequence A053760 by S. R. Finch.
PROG
(PARI) {/* Distance of primes from the sequence of the largest "mixed" QR modulo the primes */ p_lqxr(to)=local(v=[1], k, r, q, p); for(i=2, to, p=prime(i); k=p-1; r=p%4-2; while(kronecker(k, p)<>r, k-=1); v=concat(v, p-k)); print(v) }
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu)
STATUS
approved