login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091363 a(n) = n!*n^3. 5
0, 1, 16, 162, 1536, 15000, 155520, 1728720, 20643840, 264539520, 3628800000, 53129260800, 827714764800, 13680764697600, 239217231052800, 4413400992000000, 85699747381248000, 1747492334235648000, 37338643451805696000, 834363743704178688000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Denominators in the power series expansion of the higher order exponential integral E(x,3,1) + (gamma^3/6+Pi^2*gamma/36+zeta(3)/3+Pi^2*gamma/18) + (gamma^2/2+Pi^2/12)*log(x) + gamma*log(x)^2/2 + log(x)^3/6, n>0. See A163931 for information on the E(x,m,n). - Johannes W. Meijer, Oct 16 2009

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: (x+4x^2+x^3)/(1-x)^4.

MAPLE

a:=n->sum(sum(sum((n!), j=1..n), k=1..n), m=1..n): seq(a(n), n=0..17); # Zerinvary Lajos, May 16 2007

MATHEMATICA

Table[n!n^3, {n, 0, 20}]

PROG

(MAGMA) [Factorial(n)*n^3: n in [0..40]]; // Vincenzo Librandi, Jun 25 2015

CROSSREFS

Cf. A163931 (E(x,m,n)), A001563 (n*n!), A002775 (n^2*n!), A091364 (n^4*n!). - Johannes W. Meijer, Oct 16 2009

Sequence in context: A211558 A208311 A232333 * A225897 A275231 A138407

Adjacent sequences:  A091360 A091361 A091362 * A091364 A091365 A091366

KEYWORD

easy,nonn

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:30 EST 2019. Contains 329958 sequences. (Running on oeis4.)