

A091281


Central term in powers of the LoShu Magic Square as a matrix.


1



1, 5, 91, 1125, 17259, 253125, 3806091, 56953125, 854518059, 12814453125, 192222105291, 2883251953125, 43248906698859, 648731689453125, 9730978399444491, 145964630126953125, 2189469525287839659, 32842041778564453125, 492630628439671823691, 7389459400177001953125
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(n)/a(n1) tends to 15, the "Magic Number" of the LoShu Magic Square.
There are a total of 8 variations of the LoShu magic square by rotations and/or reflections. Four of the variations (those with 4, 5, 6 or 6, 5, 4 in the diagonal), have a(2) = 91. The other 4 variations (those with 2, 5, 8 or 8, 5, 2 in the diagonal  lower left to upper right  have a(2) = 59, but otherwise, a(n) for the latter sequence (central term in analogous powers of those matrices) = A091281(n).
a(2k+1) = (5)*[15^(2k)]. E.g. a(5) = 253125 = (5)*(15^4).


LINKS

Table of n, a(n) for n=0..19.
Index entries for linear recurrences with constant coefficients, signature (15,24,360).


FORMULA

The LoShu magic square square as a 3 X 3 matrix is: [8, 1, 6, / 3, 5, 7 / 4, 9, 2] = M. Then a(n) = central term in M^n.
(1/69) {23*15^n  2*24^[(n+1)/2] + 2*24^[(n+2)/2] }.  Ralf Stephan, Dec 02 2004
G.f.: (8*x^2+10*x1) / ((15*x1)*(24*x^21)). [Colin Barker, Dec 10 2012]


EXAMPLE

a(2) = 91 since M^2 = [ 91, 67, 67 / 67, 91, 67, / 67, 67, 91]


PROG

(PARI) a(n)=([8, 1, 6; 3, 5, 7; 4, 9, 2]^n)[2, 2] \\ Charles R Greathouse IV, Dec 14 2011


CROSSREFS

Cf. A033812.
Sequence in context: A152299 A242945 A243198 * A109625 A266290 A222903
Adjacent sequences: A091278 A091279 A091280 * A091282 A091283 A091284


KEYWORD

nonn,easy


AUTHOR

Gary W. Adamson, Dec 28 2003


EXTENSIONS

a(12)a(19) from Charles R Greathouse IV, Dec 14 2011


STATUS

approved



