%I #30 Aug 08 2014 08:59:18
%S 1,2,3,7,25,137,1123,13103,204045,4050293,99440273
%N Iterates of A014580, starting with a(0) = 1, a(n) = A014580^(n)(1). [Here A014580^(n) means the n-th fold application of A014580].
%H A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%F a(0)=1, a(n) = A014580(a(n-1)). [The defining recurrence].
%F From _Antti Karttunen_, Aug 03 2014: (Start)
%F Other identities. For all n >= 0, the following holds:
%F A091238(a(n)) = n+1.
%F a(n) = A091204(A007097(n)) and A091205(a(n)) = A007097(n).
%F a(n) = A245703(A007097(n)) and A245704(a(n)) = A007097(n).
%F a(n) = A245702(A000079(n)) and A245701(a(n)) = A000079(n).
%F (End)
%o (PARI)
%o isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from _Charles R Greathouse IV_
%o prev=1; i=0; print1(1, ", "); for(n=1, 123456789, if(isA014580(n), i++; if((i == prev), print1(n, ", "); prev=n))) \\ _Antti Karttunen_, Aug 02 2014
%Y Cf. A000079, A007097, A091238, A091204-A091205, A245701-A245702, A245703-A245704.
%K nonn
%O 0,2
%A _Antti Karttunen_, Jan 03 2004
%E Terms a(8)-a(10) computed by _Antti Karttunen_, Aug 02 2014