login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor. 14
12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A080224(a(n)) = 1.

This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - Timothy L. Tiffin, Jul 15 2016

If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9 (1934), pp. 278-282.

Eric Weisstein's World of Mathematics, Abundant Number

FORMULA

Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012

EXAMPLE

12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - Timothy L. Tiffin, Jul 15 2016

MAPLE

isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:

isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1, n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:

for n from 1 to 200 do if isA091191(n) then printf("%d\n", n) ; end if; end do: # R. J. Mathar, Mar 28 2011

MATHEMATICA

t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)

Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)

PROG

(PARI) is(n)=sumdiv(n, d, sigma(d, -1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012

(Haskell)

a091191 n = a091191_list !! (n-1)

a091191_list = filter f [1..] where

   f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)

         where pdivs = a027751_row x

-- Reinhard Zumkeller, Jan 31 2014

CROSSREFS

Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.

Cf. A027751, A071395 (subsequence), supersequence of A275082.

Sequence in context: A098899 A098770 A181487 * A259980 A257719 A192819

Adjacent sequences:  A091188 A091189 A091190 * A091192 A091193 A091194

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Dec 27 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 29 12:58 EDT 2016. Contains 276612 sequences.