login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091148 Expansion of (1-x-sqrt(1-2x-19x^2))/(10x^2). 2
1, 1, 6, 16, 81, 301, 1451, 6231, 29891, 137731, 666976, 3193026, 15658831, 76719891, 380788006, 1894818776, 9502977851, 47822585931, 241944876266, 1228151169656, 6258922649451, 31992657321551, 164040821525031 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n)=A014434(n+1)/5.

Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(1,-1), where the U steps come in 5 colors (i.e. Motzkin paths with the up steps in 5 colors). Series reversion of x/(1+x+5x^2). - Paul Barry, May 16 2005

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

G.f.: 2/(1-x+sqrt(1-2x-19x^2)).

a(n) = sum{k=0..n, binomial(n, k)5^(k/2)C(k/2)(1+(-1)^k)/2}, C(n)=A000108(n).

a(n) = sum{k=0..n, C(n, 2k)C(k)5^k}; - Paul Barry, May 16 2005

Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +19*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012

a(n) ~ 1/10*sqrt(230+61*sqrt(5))/(n^(3/2)*sqrt(Pi))*(1+2*sqrt(5))^n. - Vaclav Kotesovec, Sep 29 2012

G.f.: 1/(1 - x - 5*x^2/(1 - x - 5*x^2/(1 - x - 5*x^2/(1 - x - 5*x^2/(1 - ....))))), a continued fraction. - Ilya Gutkovskiy, May 26 2017

MATHEMATICA

CoefficientList[Series[(1 - x - Sqrt[1 - 2 x - 19 x^2]) / (10 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 10 2013 *)

PROG

(PARI) x='x+O('x^66); Vec((1-x-sqrt(1-2*x-19*x^2))/(10*x^2)) \\ Joerg Arndt, May 11 2013

CROSSREFS

Cf. A217275.

Sequence in context: A188570 A009352 A056204 * A210370 A266180 A229566

Adjacent sequences:  A091145 A091146 A091147 * A091149 A091150 A091151

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Dec 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 05:23 EDT 2018. Contains 316275 sequences. (Running on oeis4.)