%I #7 Mar 30 2012 18:50:43
%S 0,2,1,2,2,2,2,4,1,1,2,1,1,2,3,4,4,3,3,4,3,3,4,4,4,5,3,3,3,2,2,4,3,3,
%T 4,2,2,4,3,4,4,3,3,4,4,4,5,4,4,4,4,4,5,4,4,4,4,4,4,5,5,6,5,6,6,5,5,6,
%U 6,6,6,5,5,6,5,5,6,6,6,7,2,2,3,2,2,3,4,4,4,2,2,3,2,2,3,4,4,5,4,4,4,3
%N Number of editing steps (deletion, insertion, or substitution) to transform the binary representation of n into the ternary representation of n.
%C a(A091111(n))=n and a(m)>n for m>A091111(n).
%H Michael Gilleland, <a href="http://www.merriampark.com/ld.htm">Levenshtein Distance</a> [It has been suggested that this algorithm gives incorrect results sometimes. - _N. J. A. Sloane_]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Binary.html">Binary</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Ternary.html">Ternary</a>
%F a(n) = LevenshteinDistance(A007088(n), A007088(n)).
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Dec 20 2003