%I #15 Jun 01 2017 05:07:09
%S 1,2,13,26,205,410,3277,6554,52429,104858,838861,1677722,13421773,
%T 26843546,214748365,429496730,3435973837,6871947674,54975581389,
%U 109951162778,879609302221,1759218604442,14073748835533,28147497671066
%N Record values in A091023.
%H Indranil Ghosh, <a href="/A091052/b091052.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,17,0,-16)
%F Add 1 to every term of A077854, then take the terms with indices 4k and 4k+3.
%F (1/20) [3*4^n - (-4)^n + 2*(-1)^n + 6]. - _Ralf Stephan_, Dec 02 2004
%F G.f. -x*(2*x-1)*(1+2*x)^2 / ( (x-1)*(4*x-1)*(4*x+1)*(1+x) ). - _R. J. Mathar_, Jun 10 2013
%t LinearRecurrence[{0,17,0,-16},{1,2,13,26},24] (* _Indranil Ghosh_, Feb 22 2017 *)
%o (Python) def A091052(n): return (3*4**n-(-4)**n+2*(-1)**n+6)/20 # _Indranil Ghosh_, Feb 22 2017
%o (PARI) a(n)=(3*4^n - (-4)^n + 2*(-1)^n + 6)/20 \\ _Charles R Greathouse IV_, Feb 22 2017
%Y Cf. A091023, A091053.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, Feb 23 2004
%E More terms from _David Wasserman_, Feb 23 2006